13 research outputs found

    Fairness in online vehicle-cargo matching: An intuitionistic fuzzy set theory and tripartite evolutionary game approach

    Full text link
    This paper explores the concept of fairness and equitable matching in an on-line vehicle-cargo matching setting, addressing the varying degrees of satisfaction experienced by shippers and carriers. Relevant indicators for shippers and carriers in the on-line matching process are categorized as attributes, expectations, and reliability, which are subsequent quantified to form satisfaction indicators. Employing the intuitionistic fuzzy set theory, we devise a transformed vehicle-cargo matching optimization model by combining the fuzzy set's membership, non-membership, and uncertainty information. Through an adaptive interactive algorithm, the matching scheme with fairness concerns is solved using CPLEX. The effectiveness of the proposed matching mechanism in securing high levels of satisfaction is established by comparison with three benchmark methods. To further investigate the impact of considering fairness in vehicle-cargo matching, a shipper-carrier-platform tripartite evolutionary game framework is developed under the waiting response time cost (WRTC) sharing mechanism. Simulation results show that with fairness concerns in vehicle-cargo matching, all stakeholders are better off: The platform achieves positive revenue growth, and shippers and carriers receive positive subsidy. This study offers both theoretical insights and practical guidance for the long-term and stable operation of the on-line freight stowage industry.Comment: 36 pages, 15 figure

    Composition of biotite within the wushan granodiorite, jiangxi province, china: petrogenetic and metallogenetic implications

    Get PDF
    The Wushan skarn copper deposit is genetically associated with the Wushan granodiorite. In this study, we investigate the petrography and mineralogy of biotites within the Wushan granodiorite. We also determine the formation conditions of these biotites and discuss the significance of these minerals in terms of petrogenesis and mineralization. Electron microprobe analysis shows that biotites within the Wushan granodiorite are Magnesio-biotites that contain relatively high Mg and Ti concentrations and low Fe and Al concentrations. The ionic coefficient of AlVI in these biotites ranges from 0.03 to 0.19, with SFeO/(SFeO + MgO) ratios that range from 0.531–0.567 and MgO concentrations that range from 12.80–14.06 wt%. These results indicate that the Wushan granodiorite is an I-type granite. The Wushan biotites crystallized at temperatures (T) of 720°C–750°C, with oxygen fugacity (fO2) conditions of –11.6 to –12.5 and pressures (P) of 0.86–1.03 kb. These conditions are indicative of a crystallization depth (H) of 2.84–3.39 km. These data also indicate that the Wushan granodiorite developed under conditions of high temperature and high oxygen fugacity, suggesting that the Wushan granodiorite is prospective for magma-hydrothermal mineralization and that this granodiorite probably contributed to the formation of the Wushan skarn copper deposit. ResumenEl depósito de skarn cuprífero de Wushan está asociado genéticamente con la granodiorita de Wushan. En este estudio se investiga la petrografía y mineralogía de biotitas de la granodiorita de Wushan. Se determinan también las condiciones de formación de estas biotitas y se discute la significación de estos minerales en términos de petrogénesis y mineralización. Un análisis de microsonda a electrones muestra que las biotitas de la granodiorita de Wushan son biotitas de magnesio que contienen altas concentracionesrelativas de Mg y Ti y bajas de Fe y Al. El coeficiente icónico de AlVI en estas biotitas oscila entre 0,03 y 0,19, con índices SFeO/(SFeO + MgO) que oscilan entre 0,531-0,567 y concentraciones de MgO que van desde 12,80 a 14,06 wt%. Estos resultados indican que la granodiorita de Wushan es de granito tipo I. Las biotitas de Wushan se cristalizaron a temperaturas (T) de 720°C–750°C, con condiciones de fugacidad del oxígeno (fO2) de -11,6 a -12,5 y presión (P) de O,86 a 1,03 kb. Estas condiciones indican una profundidad de cristalización (H) de 2,84-3,39 kilómetros. Los datos también indican que la granodiorita de Wushan se desarrolló bajo condiciones de alta temperatura y alta fugacidad de oxigeno, lo que sugiere que la granodiorita de Wushan tiene potencial para la mineralización magmática-hidrotérmica y que esta granodiorita probablemente contribuyó a la formación del depósito de skarn cuprífero de Wushan

    Composition of biotite within the Wushan granodiorite, Jiangxi Province, China: Petrogenetic and metallogenetic implications

    Get PDF
    The Wushan skarn copper deposit is genetically associated with the Wushan granodiorite. In this study, we investigate the petrography and mineralogy of biotites within the Wushan granodiorite. We also determine the formation conditions of these biotites and discuss the significance of these minerals in terms of petrogenesis and mineralization. Electron microprobe analysis shows that biotites within the Wushan granodiorite are Magnesio-biotites that contain relatively high Mg and Ti concentrations and low Fe and Al concentrations. The ionic coefficient of AlVI in these biotites ranges from 0.03 to 0.19, with SFeO/(SFeO + MgO) ratios that range from 0.531–0.567 and MgO concentrations that range from 12.80–14.06 wt%. These results indicate that the Wushan granodiorite is an I-type granite. The Wushan biotites crystallized at temperatures (T) of 720°C–750°C, with oxygen fugacity (fO2) conditions of –11.6 to –12.5 and pressures (P) of 0.86–1.03 kb. These conditions are indicative of a crystallization depth (H) of 2.84–3.39 km. These data also indicate that the Wushan granodiorite developed under conditions of high temperature and high oxygen fugacity, suggesting that the Wushan granodiorite is prospective for magma-hydrothermal mineralization and that this granodiorite probably contributed to the formation of the Wushan skarn copper deposit.   Resumen El depósito de skarn cuprífero de Wushan está asociado genéticamente con la granodiorita de Wushan. En este estudio se investiga la petrografía y mineralogía de biotitas de la granodiorita de Wushan. Se determinan también las condiciones de formación de estas biotitas y se discute la significación de estos minerales en términos de petrogénesis y mineralización. Un análisis de microsonda a electrones muestra que las biotitas de la granodiorita de Wushan son biotitas de magnesio que contienen altas concentracionesrelativas de Mg y Ti y bajas de Fe y Al. El coeficiente icónico de AlVI en estas biotitas oscila entre 0,03 y 0,19, con índices SFeO/(SFeO + MgO) que oscilan entre 0,531-0,567 y concentraciones de MgO que van desde 12,80 a 14,06 wt%. Estos resultados indican que la granodiorita de Wushan es de granito tipo I. Las biotitas de Wushan se cristalizaron a temperaturas (T) de 720°C–750°C, con condiciones de fugacidad del oxígeno (fO2) de -11,6 a -12,5 y presión (P) de O,86 a 1,03 kb. Estas condiciones indican una profundidad de cristalización (H) de 2,84-3,39 kilómetros. Los datos también indican que la granodiorita de Wushan se desarrolló bajo condiciones de alta temperatura y alta fugacidad de oxigeno, lo que sugiere que la granodiorita de Wushan tiene potencial para la mineralización magmática-hidrotérmica y que esta granodiorita probablemente contribuyó a la formación del depósito de skarn cuprífero de Wushan

    Overexpression of a Grapevine Sucrose Transporter (VvSUC27) in Tobacco Improves Plant Growth Rate in the Presence of Sucrose In vitro

    No full text
    The import of sugar from source leaves and it further accumulation in grape berries are considerably high during ripening, and this process is mediated via sucrose transporters. In this study, a grape sucrose transporter (SUT) gene, VvSUC27, located at the plasma membrane, was transferred to tobacco (Nicotiana tabacum). The transformants were more sensitive to sucrose and showed more rapid development, especially roots, when cultured on MS agar medium containing sucrose, considering that the shoot/root dry weight ratio was only half that of the control. Moreover, all transformed plants exhibited light-colored leaves throughout their development, which indicated chlorosis and an associated reduction in photosynthesis. The total sugar content in the roots and stems of transformants was higher than that in control plants. No significant difference was observed in the leaves between the transformants and control plants. The levels of growth-promoting hormones were increased, and those of stress-mediating hormones were reduced in transgenic tobacco plants. The qRT-PCR analysis revealed that the expression of VvSUC27 was 1,000 times higher than that of the autologous tobacco sucrose transporter, which suggested that the markedly increased growth rate of transformants was because of the heterogeneously expressed gene. The transgenic tobacco plants showed resistance to abiotic stresses. Strikingly, the overexpression of VvSUC27 leaded to the up regulation of most reactive oxygen species scavengers and abscisic acid-related genes that might enable transgenic plants to overcome abiotic stress. Taken together, these results revealed an important role of VvSUC27 in plant growth and response to abiotic stresses, especially in the presence of sucrose in vitro

    Overexpression of a Grapevine Sucrose Transporter (VvSUC27) in Tobacco Improves Plant Growth Rate in the Presence of Sucrose In vitro

    No full text
    The import of sugar from source leaves and it further accumulation in grape berries are considerably high during ripening, and this process is mediated via sucrose transporters. In this study, a grape sucrose transporter (SUT) gene, VvSUC27, located at the plasma membrane, was transferred to tobacco (Nicotiana tabacum). The transformants were more sensitive to sucrose and showed more rapid development, especially roots, when cultured on MS agar medium containing sucrose, considering that the shoot/root dry weight ratio was only half that of the control. Moreover, all transformed plants exhibited light-colored leaves throughout their development, which indicated chlorosis and an associated reduction in photosynthesis. The total sugar content in the roots and stems of transformants was higher than that in control plants. No significant difference was observed in the leaves between the transformants and control plants. The levels of growth-promoting hormones were increased, and those of stress-mediating hormones were reduced in transgenic tobacco plants. The qRT-PCR analysis revealed that the expression of VvSUC27 was 1,000 times higher than that of the autologous tobacco sucrose transporter, which suggested that the markedly increased growth rate of transformants was because of the heterogeneously expressed gene. The transgenic tobacco plants showed resistance to abiotic stresses. Strikingly, the overexpression of VvSUC27 leaded to the up regulation of most reactive oxygen species scavengers and abscisic acid-related genes that might enable transgenic plants to overcome abiotic stress. Taken together, these results revealed an important role of VvSUC27 in plant growth and response to abiotic stresses, especially in the presence of sucrose in vitro

    Circular RNA hsa_circ_0075323 promotes glioblastoma cells proliferation and invasion via regulation of autophagy

    No full text
    Abstract Background Protein p62 (sequestosome 1) encoded by gene SQSTM1 plays a vital role in mediating protectively selective autophagy in tumor cells under stressed conditions. CircSQSTM1 (hsa_circ_0075323) is a circular transcript generated from gene SQSTM1 (chr5:179260586–179260782) by back-splicing. However, the potential role of hsa_hsa_circ_0075323 in glioblastoma (GBM) remains unclear. Here, we aimed to explore the biological function of hsa_circ_0075323 in GBM and its relationship with autophagy regulation. Results Hsa_circ_0075323 is highly expressed in GBM cells and mainly locates in the cytoplasm. Inhibition of hsa_circ_0075323 in U87-MG and T98G cells attenuated proliferation and invasion ability significantly, while upregulation of has_ circ_0075323 enhanced proliferation and migration of U251-MG and A172 cells. Mechanistically, depletion of hsa_circ_0075323 in GBM cells resulted in impaired autophagy, as indicated by increased expression of p62 and decreased expression of LC3B. Conclusions Hsa_circ_0075323 regulates p62-mediated autophagy pathway to promote GBM progression and may serve as a prognostic biomarker potentially
    corecore